e

/

“Ames Research Center

Physics-Based Impact Risk Modeling

Lorien Wheeler?, Donovan Mathias®, Christopher Mattenberger¢
a Computer Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035, USA. °NASA Ames Research Center, Moffett Field, CA 94035, USA. c<Science and Technology Corporation, NASA Ames Research Center, Moffett Field, CA 94035, USA.

OVERVIEW & OBIJECTIVES

The Engineering Risk Assessment (ERA) team is developing a physics-based, probabilistic risk model for assessing potentially hazardous asteroid (PHA) impact threats. The model integrates probabilistic sampling of uncertain asteroid parameters with physics-based analyses of key entry, breakup, and airburst processes to estimate expected damage areas
and casualties from various classes of PHAs. The model is used to perform sensitivity studies, bound potential consequences of impact scenarios with uncertain characteristics, and investigate the implications of specific impact factors and cases. These results provide insight into which parameters most significantly drive the risks, the relative importance of
characterizing or measuring those parameters to varying degrees of accuracy, and what physical models are most important to refine in order to meaningfully evaluate risk levels. This work is part of the NASA Ames Research Center (ARC) Planetary Defense Integrated Product Team (PD IPT) initiative to develop predictive impact risk assessment tools that will

support mitigation strategy planning and potential threat response decisions.
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